**Model Solutions** 

#### **INChO 2005**



#### Problem 2

#### 18 marks

Solutions

| Elect | rochemistry                                          |  |  |  |  |
|-------|------------------------------------------------------|--|--|--|--|
| 2.1   | $\Lambda$ (NaOH) = 221                               |  |  |  |  |
|       | $\Lambda(\text{NaCl}) = 112$                         |  |  |  |  |
|       | $\Lambda(\text{HCl}) = 403$                          |  |  |  |  |
|       | $\Lambda(\mathrm{H}^{+} \And \mathrm{OH}^{-}) = 512$ |  |  |  |  |
|       |                                                      |  |  |  |  |
| 2.2   | $\kappa$ (KCl) = 0.0812 S m <sup>-1</sup>            |  |  |  |  |

**2.3** Oxidation state of gold = 3

2.4 
$$E^{\circ}_2 = E^{\circ}_1$$
  
 $K_2 = (K_1)^2$ 

**2.5** change in the cell potential is -0.01 V

**2.6** It is easier to carry out the oxidation  $Cu^+ \rightarrow Cu^{++} + e^-$ 

## Problem 3

#### 14 marks

Solutions

Molecular Structure and Spectroscopy

3.8

 $k = 512.1 \text{ Nm}^{-1}$ 

#### Problem 4

Solutions

16 marks





#### Problem 5

14 marks

Solutions





#### Problem 6

## 12 marks

**Solutions** 

#### Chemical Thermodynamics and Kinetic Theory of Gases

6.1  $H_2(g) = -120.9 \text{ kJ per g}$   $CH_3OH(l) = -19.9 \text{ kJ per g}$   $CH_4(g) = -50.1 \text{ kJ per g}$  $C_6H_{14}(g) = -453 \text{ kJ per g}$ 





#### **Problem 8**

### Proteins, amino acids, nucleic acids and buffers





#### Problem 9

## 13 marks

**Solutions** 

#### **Transition Metal Chemistry**



Diffuse nature of d orbital and increased nuclear charge due to added protons

9.2

9.1





**Solutions** 

#### **INChO 2006**







(0.:

**Solutions** 



Solutions

#### Problem 3

#### 14 marks

#### **Chemical Kinetics**

3.1

 $2NO + 2H_2 \rightarrow N_2 + 2H_2O$ 

3.2

$$-1/2 d_{\rm NO2}/dt = dP_{\rm N2}/dt$$

Runs 1 and 2; p<sub>NO</sub> is doubled while that of H<sub>2</sub> kept constant. Rate changes 4 times. Order with respect to NO is 2
Runs 3 and 4; p<sub>H2</sub> is doubled while p<sub>NO</sub> is kept constant. Rate doubles. Order with respect to H<sub>2</sub> is 1
Runs 3 and 5; both p<sub>NO</sub> and p<sub>H2</sub> are double. Rate changes 8 times. Confirms the orders

3.4

**3.5**  $-1/2 \text{ d NO} / \text{dt} = \text{kapp} [P_{\text{H}_2}]$ 

sec<sup>-1</sup>

 $Torr^{-2} sec^{-1}$ 

3.6

3.7

i. Runs 1 and 2: NO is in excess. Hence the reaction will be of first order .

Rate=  $k_{app} p_{H2}$ ;  $t_{1/2}$  will be independent of  $p^0_{H2}$ . Hence it will be the same as for Run 1 = **19.1 sec** 

ii. In Runs 3 and 4,  $H_2$  is in excess. Hence the reaction will be of second order.



# Indian National Chemistry Olympiad Solutions

## Problem 4

13 marks

## Solubility Equilibria

| 4.1 | $Ag^+ + Cl^- \rightleftharpoons AgCl \downarrow$                                                        |
|-----|---------------------------------------------------------------------------------------------------------|
|     | $2Ag^{+} + CrO_{4}^{-2} \rightleftharpoons Ag_{2}CrO_{4} \downarrow$                                    |
|     |                                                                                                         |
| 4.2 | Amount of Cl <sup>-</sup> in 100 mL = 0.0035 g                                                          |
|     |                                                                                                         |
| 4.3 | Indicator range 0.0139 – 0.00277 M                                                                      |
|     |                                                                                                         |
|     |                                                                                                         |
| 4.4 | $[CI^{-}] = 1.200 \times 10^{-5}$                                                                       |
|     |                                                                                                         |
| 4.5 | $H^+ + CrO_4^{2-} \rightleftharpoons HCrO_4^-$                                                          |
|     | $2\text{H}^+ + 2 \text{ CrO}_4^{2-} \rightleftharpoons \text{Cr}_2\text{O}_7^{2-} + \text{H}_2\text{O}$ |
|     | $2U^+ + CrO^{2-} \rightarrow UCrO$                                                                      |
|     | $2\Pi + U_{\Pi} M \neq \Pi_{2} U_{\Pi} M$                                                               |
|     |                                                                                                         |
| 4.6 | From the above calculations, the sodium dihydrogen phosphate and sodium                                 |
|     | hydrogen phosphate buffer can be used.                                                                  |
|     |                                                                                                         |
|     |                                                                                                         |
| 4.7 | (0.5  M)(0.5  L)(119.98) = 29.99  g of sodium dihydrogen phosphate                                      |
|     |                                                                                                         |

(0.15 M)(0.5 L)(141.96) = 10.65 g of sodium hydrogen phosphate

#### Problem 5

## 18 marks

#### **Molecular Hydrogen**

5.1

For the reaction II,  $K = 1 \times 10^{-16}$ 

For the reaction III,  $K = 9.743 \times 10^4$ 

- **5.2** On the basis of the values obtained for the equilibrium constants of the two reactions which of the statements would be correct?
  - (i) Reaction II is spontaneous whereas III is not.
  - (ii) Both reactions II and III are spontaneous.
  - (iii) When the reactants are mixed in the case of reaction II the reaction will go to completion whereas in the case of reaction III the equilibrium will lie towards left.
  - (iv) Reaction III is spontaneous whereas II is not.
- **5.3** No effect on the equilibrium constant, as the temperature is kept constant, the magnitude remains the same

5.4 
$$\frac{\ln Kp_2}{Kp_{298}} = \frac{-8.5\ln (T_2/298)}{R} + \frac{0.02575(T_2-298)}{R} + \frac{40853}{R} \left(\frac{1}{T_2} - \frac{1}{298}\right)$$

**5.5** 
$$(Kp)_{1200} = 1.592$$

5.6  $CO_2 = 26.39 \% = H_2$ .  $CO = 23.1 \% = H_2O$ 

**5.7**  $K_4 = 4.62$   $K_5 = = 7.355$ 

## **Solutions**

#### Problem 6

10 marks



**6.8** Galvanizing is preferred, as  $E^{\circ}_{Zn2+/Zn}$  is more negative than  $E^{\circ}_{Fe2+/Fe}$ . Hence when exposed to air Zn will preferentially undergo oxidation as compared to Fe.

Solutions



#### **Problem 8**

23 marks

#### Chemistry of chromium and nickel

8.1 (1) moles of AgCl = 4.305 / 143.5 = 0.03(2) moles of AgCl= 2.87/143.5 = 0.02



Solutions



# Indian National Chemistry Olympiad Solutions

#### 8.14 (c) optical

| 8.15                                                                                                                                                                                                           | $ \begin{pmatrix} N \\ N \\ N \\ N \\ N \\ N \\ N \end{pmatrix} $ +2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 8.16                                                                                                                                                                                                           | $J: [Ni(H2O)_6]^{2+} \qquad \lambda \max 650 \text{ nm}$             |
|                                                                                                                                                                                                                | K: $[Ni(en)_3]^{2+}$ $\lambda \max 570 \text{ nm}$                   |
| <b>8.17</b> Which of the following statements about the crystal field splitting 10Dq is correct<br>(a) 10Dq of $en > 10Dq$ of $H_2O$<br>(b) 10Dq of $en < 10Dq$ of $H_2O$<br>(c) 10Dq of $en = 10Dq$ of $H_2O$ |                                                                      |

## **INCHO 2007**

#### Problem 1

13 Marks

## **Chemical Kinetics and Reaction Rates**

1.1 
$$v = k[O_2]^2[NO] \quad \text{or} \quad v = k[NO]^2[O_2]$$
1.2 
$$2O_2(g) + NO(g) \rightarrow NO_3 \qquad O_2(g) + 2NO(g) \rightarrow 2NO_2$$
Chemically correct reaction from the above two is
1.3 
$$v = -\frac{1}{2} \frac{d[NO]}{dt} = -\frac{d[O_2]}{dt} = \frac{1}{2} \frac{d[NO_2]}{dt}$$
1.4 
$$\frac{d[NO_2]}{dt} = \frac{k_1k_2}{k_1}[NO]^2[O_2]$$
1.5 
$$\frac{d[N_2O_2]}{dt} = \frac{k_1}{k_{-1}}[NO]^2[O_2] \quad \text{for } k_{-1} >> k_2[O_2]$$
1.6 
$$NO_3 \text{ is a radical species produced in mechanism - 1 and may be detected by an appropriate techniques such as ESR.
1.7 
$$K_c = -6.44 \times 10^5$$
1.8 
$$\Delta E = -1JT.52 \text{ kJ}$$
1.9 The total number of gas molecules diminishes when the reaction proceeds to completion. So  $\Delta S$  is -ve.$$

#### Problem 2

<u>Solutions</u>

### 16 marks

Pheromones – A Case of Sulcatol





Solutions

|      | 1411 1                                  |                                                                 | childen y Olympiad            | Solutions                                            |  |  |
|------|-----------------------------------------|-----------------------------------------------------------------|-------------------------------|------------------------------------------------------|--|--|
| Prol | blem (                                  | 3                                                               | 16 Marks                      |                                                      |  |  |
| Sea  | Wate                                    | r                                                               |                               |                                                      |  |  |
| 3.1  | (c) i                                   | ce has an open                                                  | cage-like structure X         |                                                      |  |  |
| 3.2  | В                                       | oiling point of s                                               | ea water = 373.6 K            | (0.5 mark)                                           |  |  |
| 3.3  | (A)                                     | (A) (b) 1.25 X                                                  |                               |                                                      |  |  |
|      | (B) (                                   | (c) is stronger th                                              | an that observed in NaCl      | X                                                    |  |  |
| 3.4  | (A)                                     | First extraction                                                | )n                            |                                                      |  |  |
|      |                                         | Layer                                                           | Normality                     | Amount                                               |  |  |
|      |                                         | Organic                                                         | 0.04645                       | 0.0590g of I <sub>2</sub> /10 mL CCl <sub>4</sub>    |  |  |
|      |                                         | Aqueous                                                         | 5.354 x 10 <sup>-4</sup>      | 0.0680g of I <sub>2</sub> /1000 mL H <sub>2</sub> O  |  |  |
|      |                                         | Second extrac                                                   | etion                         |                                                      |  |  |
|      |                                         | Organic                                                         | 0.02486                       | 0.03158g of I <sub>2</sub> /10 mL CCl <sub>4</sub>   |  |  |
|      |                                         | Aqueous                                                         | 2.8677 x 10 <sup>-4</sup>     | 0.03642g of I <sub>2</sub> /1000 mL H <sub>2</sub> O |  |  |
|      |                                         | K = 0.04645/5                                                   | $.354 \times 10^{-4} = 86.70$ |                                                      |  |  |
|      |                                         |                                                                 |                               |                                                      |  |  |
|      | (B)                                     |                                                                 |                               |                                                      |  |  |
|      |                                         |                                                                 |                               |                                                      |  |  |
|      | or ···································· |                                                                 |                               |                                                      |  |  |
|      |                                         |                                                                 |                               |                                                      |  |  |
|      |                                         | tbp with lone p                                                 | bairs at 3 vertices           |                                                      |  |  |
|      |                                         |                                                                 |                               |                                                      |  |  |
| 3.5  | (A)                                     | Mass of $CaCO_3 = 1.6 \times 50 = 80$ g per litre of sea water. |                               |                                                      |  |  |
|      | (B)                                     |                                                                 |                               |                                                      |  |  |
|      | $(\mathbf{D})$ Na <sup>+</sup>          |                                                                 |                               |                                                      |  |  |
|      |                                         |                                                                 |                               |                                                      |  |  |
|      | (C)                                     | (C) % sites that underwent exchange = $0.08\%$                  |                               |                                                      |  |  |
|      |                                         |                                                                 |                               |                                                      |  |  |
| 3.6  | Volume of HCl at STP = $42.56$ L.       |                                                                 |                               |                                                      |  |  |
| 2.0  |                                         |                                                                 |                               |                                                      |  |  |
|      |                                         |                                                                 |                               |                                                      |  |  |

#### Problem 4

#### 21 marks

**Solutions** 

## Cycloaddition Chemistry





131



#### Problem 5

5.1

5.4

#### Acetylene – Production, Structure & Uses

$$\rho = \frac{PM}{RT} = \frac{101.3 \times 10^3 \times 26}{8.314 \times 10^3 \times 300} = 1.06 \text{ kg m}^{-3}$$

5.2 Mass of commercial sample = (Since purity = 
$$97 \%$$
) = 26.9 kg

5.3 mass of water initially added 124.0 + 17.0 = 141.0 kg mass of final slurry = 124.0 + 31.0 = 155.0 kg

Heat liberated on burning 16 kg of acetylene is  $\sim = 800 \times 10^6$  J



Χ

**5.6** c) increasing s character with increasing unsaturation

5.7 i) Hydrogen in acetylene X

ii) acetone X water Xiii)  $H_3C$  $H_3C$  $H_3C$ 



#### Problem 6

33 marks

## **Transition Metal Chemistry**









6.5 TiO<sub>2</sub> has Ti<sup>4+</sup> hence d<sup>0</sup> electronic configuration. Here d-d\* transition is not possible hence it is color less.  $Fe_2O_3$  has  $Fe^{3+}$  d<sup>5</sup> system hence, d-d\* transition is possible.

6.6 [Co(NH<sub>3</sub>)<sub>6</sub>]Cl<sub>3</sub>: Hexamminecobalt (III) chloride

K<sub>4</sub>[Fe(CN)<sub>6</sub>] : Potassium hexacyanoferrate (III)

Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> : Bis(cyclopentadienyl)iron(II)

